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of lead zirconate—titanate ceramics

K. Van Den Abeele® and M. A. Breazeale
National Center for Physical Acoustics, University of Mississippi, University, Mississippi 38677

(Received 24 March 1994; accepted for publication 18 August 1995

Frequency dependence of the first ultrasonic nonlinear parameter and the abnormally high third
harmonic signals measured in lead zirconate—titafR¥d) ceramics suggest the introduction of a
revised theoretical model combining higher-order nonlinearity and generalized dispersion. The new
nonlinear dispersive equation has been solved by perturbation theory. A solution is found in the form
of a set of parameters whose magnitude is obtained from a fit of the experimental data. The
parameters are independent of frequency and initial amplitude. The model is applied to four
samples, and the results are discussed. The validity of the perturbation theory in these cases is
tested. ©1996 Acoustical Society of America.

PACS numbers: 43.35.Cg, 43.25.Ba, 43.38.Fx

INTRODUCTION For dispersionone can modify Eq(l) by inclusion of a

N o ) .. fourth-order derivative with respect to the propagation dis-
Peculiarities of sound wave behavior in crystals is shift-i,, .o

ing the attention of scientists from the linear theory to more

complicated models which describe phenomena like dissipa- 9*U B 9°U 9*uU

tion, dispersion, and/or nonlinear propagation. To describe  P0 "2 =M 9a2 +I ga%’ 3
sound propagation in solids in the linear approximation _ _ _

(Hooke’s law approximationone can write the longitudinal WhereT’; is the dispersion constant.

wave equation in the form The solution of Eq.(2) accounts for the generation of
second harmonic&@nd higher harmonigsiuring the propa-
9°U 9°U gation of an initially sinusoidal wave of amplitude. This
Po W:MZ 9al’ (1) solution can be obtained through use of a perturbation

techniqué“or a more complicated Fourier analy$iSuch a
wherep, is the unstrained mass density,is the longitudinal ~ solution has led to the introduction of the nonlinearity pa-
displacementa is the distance measured along the propagarameter, the negative ratio of the coefficient of the nonlinear
tion direction in the unstrained crystal, aid, is a linear term to that of the linear term in the nonlinear wave equation
combination of second-order elastic constants depending on
the direction of propagatiotM,=K,, with K, as listed in - SKa+Kg _ 8A
Table ). This formulation is convenient because it allows Ks A%’

one to account for a number of phenomena in a straightfor- . . I . .
. . whereA is the amplitude of the initially sinusoidal wave at
ward way. Forabsorption, one simply allows complex val-

the source and, is the measured amplitude of the generated
ues ofM,. - . : o .
. . . second harmonic at a propagation distaagk=2x/\ is the
To describenonlinearity one can account for propaga- . : o .
L T : . propagation constant. If the amplitude of the initial ultrasonic
tion in a pure mode directioffor cubic lattices one of the

three principal directions by writing the differential wave wave 1S gmall enough, the amplitude of the third harmonic
T signalA; is expressed as
equation in the forrh

4

) ) ) A3a%k* [3K,+Kj)\?
PU_PUl Y (U , A== =
Po gz = Gz Mzt Magg tMe( 3]+ @ ;
_ o \/1+ 16 L K,(K4+6K3+3K,)]? 5
whereM ;=3K,+Kj is a combination of both second- and X ok%a? | 1T T 2K+ 3K,)2 )

third-order elastic constants, also depending on the direction
of propagation(see Table)l Here,M, contains elastic con- in which K, is a combination of fourth-order elastic con-
stants up to the fourth-ordeM,= 3K ,+ 3K+ 3K ). stants. In Cu single crystaland almost all other crystalghe
amplitude ofK, is of the order of 1B;. In experimental
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TABLE I. K, andKj for [100], [110], and[111] directions.

Direction K, Ks

[100] Cu Cin

(110 C11+Co+2Cy, C1111C12+2C 66
2 4

[117] C11+2C1y+4Cy, Cya1+6C 119+ 12C 44+ 24C 166+ 2C 105+ 16C 456
3 9

Recently Na and Breazealéound that the third har- (Table II). Finally, we examine the error made by using per-
monic measured in lead zirconate—titanédBZT) samples turbation theory in our model.
was much too large to allow them to make the approximation
given in Eq.(6). To satisfy their data they introduced a sec-
ond nonlinearity parameter which was expressed in terms qf THEORETICAL MODEL
measured quantities as A. Generalization of the differential equation
8, 32 Ag @ The third harmonic signals observed by Na and
27 a%k* A% Breazeale were too large to satisfy Eq8), in which the
influence ofK, is considered to be negligible. For the unpo-

For most crystalline solids this would mean that larized K1 sample at 10 MHz they observed a value of
o g  B:=1038, whereag? would be only 57.8. For th&1 po-
B2=p% (8) larized sample at the same frequency the ratig.ofo 4% is

however, its definition allowed flexibility in data interpreta- V€N more strikingly different from unitys,/5*=127.

tion for PZT. Na and Breazeale stated that serious deviations, SiNce bothK; andK; are known from the measurement
from Eq. (8) in experimental data implies that, no longer of the.velocny and the nongmearlty parameter at Iowofre—
is negligible and/or that a nonlinear equation different fromduénciese.g.,K,=14.75< 10" kg/ms andKy=—156x10'

Eq. (2) must be used to describe the nonlinear wave propalfg/rnsz for an ynpolarized(l SamP'e’ we can consigier !Eq.
gation. (5) as a function ofK, only. Substituting this equation into

For single crystals, determination of the nonlinearity pa-Ed- (7), e obtain an expression fe, as a function of the

rameter from velocity measurements and harmonic generdQurth-order elastic constant. Knowing the experimergial
tion yields values for the third-order elastic constants whichvalue, t_h's relation can be inverted pumerlcally Koy or one
agree with other methodsThe results are independent of can estimate the fourth-order elastic constant from the inter-
frequency. Also, the relationship given by E8) is followed section points of the graphs in Fig. 1. We have found that the

for single crystals whenever it has been testathis means €XPerimental 3, value for the K1 sample can only be

that fourth order elastic constants in single crystals are inf€ached for a value oK, which is at least three orders of

deed negligible. magnitude larger that;. In an analogous way we have

When the nonlinear properties of PZT were investigatedound that the values df, for the other PZT samples must
they were found to be considerably different from those of?€ €ven larger: almost five orders of magnitude for the po-
single crystals. Na and Breazeale used their measurements/@5i2€d S1 sample. _
report for the first time a frequency dependence of the non- As a consequence of th(_ese latge values, the quantity
linearity paramete at room temperature. In addition, they Ma (=3/2K+3K3+1/2K,) in Eq. (2) must be large as
found that for their PZT samples the quantitigs do not well. This means that this term is the most important term in

satisfy Eq.(8) at 10 MHz. The observed third harmonic am- the expression for the third harmonic signal amplitude. In

plitudes were found to be much larger in PZT than onethis situation we introduce an approximation that replaces

would calculate from Eq(6). Eq. (6):
In this paper we focus on the doubly anomalous behav- ak®Ad M,
ior of PZT ceramics and propose a solution from theoretical ~ Az= o4 M_2 9)

analysis. The suggestions of Na and Breazeale about the role

of large fourth-order elastic constants and/or the use of a

different nonlinear equation have served as a starting poinfABLE II. Physical dimensions and properties of #& andS1 samples of
for this theoretical investigation. First, we formulate the PZT ceramic.

model by combining the nonlinear equation of Thurston and

Sample Velocity Density Thickness
Shapiro(in which we assume th#t, is non-negligible with
a generalization of the dispersion equation. Then we use theK1-unpolarized 4334.1mis 7850 kgim  9.03<10°3m
perturbation method to find an approximate solution which gll_'l?:gl';sge J 153722% 2//55 g%i% kkgzlr:q 228218_32
we apply and discuss in connection with the physical prop- s;.polarized 4523.1 m/s 8010 kgm  8.82x10°3m
erties of polarized and unpolarizé&dl andS1 PZT samples
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FIG. 1. The influence oK, on the second nonlinearity paramefrEqgs.(7) and(5)] for different samples of PZT. The intersection with the horizontal line
(experimental value of3,) gives an indication of the magnitude of the fourth-order elastic constantk 1-unpolarized-K,=2.5x10' kg/m<; (b)
K 1-polarized-K ,=2.3x 10" kg/m<; (c) S1-unpolarized-K ;=25x 10" kg/ms; (d) S1-polarized-K ,=75x10"° kg/m¢.

Indirectly, this expression calls for a new definition 8. U o Ju\n-2
This new definition, which is distinguished by a prime, is gl =—|= Mol —
(9a n=2 &a
24 A, 2
= oU U
Ba= 318 A3 (10 =Ma+ Mz ——+My| ——
This new definition makes it possible to obtain an approxi- u\3
mate value of the fourth-order elastic constant in cases where +Ms Zal T (11b)

its influence is non-negligible. The third harmonic signal

measurements of Na and Breazeale have been analyzed in

this way. They suggest that higher-order elastic constant comparison with the linear equation, it is worthwhile to
should be taken into account in the nonlinear differentiainote that the multiplier 0o§°U/3a? is no longer a constant. It
equation. is a series expansion in the straibl/Ja.

Consequently, to make further investigation we start ~ The dispersion effects are included in a first approxima-
with a generalized form of Eq(2), the general nonlinear tion by modifying the linear wave equation with a term pro-
differential equation given by Thurston and Shagiro: portional to the fourth derivative of the displacement with

respect to the propagation distance, in analogy with the gen-

#U U [aU eralization of the linear wave equatigiq. (3)]. We have
Po iz = 532 9 9a )’ (11a found that this still does not give an adequate nonlinear
equation. Therefore, we have replacEgin Eq. (3) by a
with series expansion in the straifd/da. The combination of
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both nonlinear phenomena and dispersion effects lead to tha which A denotes the amplitude of the sinusoidal wave at

following equation: input (zero propagation distanceSubstituting Eq(14) into
72U JU\ 22U JU\ U Eqg. (13) and taking into consideration only the largest con-
po == =9| —| — +h| —| —, (12)  tributions on the right-hand sidghe zero approximation in
at Jaj oa Ja) oa terms of the small factors containing® dU% da,
where 9°U% 9a?,---), we find that the correction tertd® must sat-
aU VY aU+M ou +|v| aU 3+ isfy
9 a S9a 4 sa 5\ ga o 2U° FEVE g*ue
(124 p° a2 M, 922 I, Ja”
and
U aU U au\3 M 0UO+M 9u°)® +M ‘9_UO3+.. ﬂ
h| == | =T+ Ty —— |+ T4 —— o —] +--- 3 ga 4 oa ° 9a?
Ja Ja Ja
(12b au° au0)?2 au%\3 au°
. . . . . F3_+F4 — +F5 — + - 4 -
The purpose of our investigation is to determine the number Ja da da Ja

and magnitudes of terms required in Et2) for an adequate 17)

description of the behavior of PZT. _— Lo L0
Substituting the zero approximation solutiéh” into Eq.

(17), this can be written in the form
§?u¢ a°uc a*uc

B. Approximate solution

Even thoughB, and especially3,, can be large for PZT

. ; ) : 2 272 lo—7
ceramics, the second and third harmonic amplitudes mea- 9t Ja Ja
sured during the experiments are still small compared with i
the fundamental amplitude. This means that we are looking = E X, sifn(ka— wt)], (18
n=1

for small perturbations of an initially well-known waveform,
so that we can use perturbation theory to find a solution tavhere theX, are

Eq. (12), and later check the validity of this approach. “ (M CK2T,, k2 T2A21+1
We rewrite Eq.(12) in the form X,=— >, —2at2 ;|2+|2
I=1
a?U " 9?U r a*U
Po gz~ M2z 12 o7 « 1 21+1 (184
21+1 )
[ feu 9?U oU a*U . , I
=19\ 7a —M; 72z hl — Ja I3 —= P (13 Xy =S (l\/|2|+1_k1;|2|1 Dk TA J_(I )
I = 2 | \1=
and propose a solution of this dispersive nonlinear equation =] J (180)
in the form
* M _ k21’* k2|+2A2|+1
U:Uo+UC (14) X2j+1:_2 ( 21+2 ;|2+|2)
“~
with U° the solution of the simplest dispersive linear equa- :
tion: 2j+1

o 21+ 1)
2141\ 1]
(15) In Egs.(1839, (18b), and(180), the final factors in each term

are binomial coefficients defined as follows:

(189
JU° U0 J*U°
Po o2 -M; Jaz -, gar =0,

namely, n n!
o_ . M, [P m/ " mi(n—m)!" (19
UT=Asinka—ot)  with o= rs k( =< For example, if one considers only the coefficiekts and
(16) I',, with n<6, Eq.(18) becomes
|
Ju¢ Ju¢ J*ue
Po o2 —M; Jaz —I', oat
M,— k2T )k*AS  (Mg—k2T)kCAS M;— k2T 5)k3A2
_ [( 4 44) Jr( 6 86) Sir{ka—wt]—[( 3 23)
Ms— k2T ) k°A* M,— KT kA3 3(Mg—k2T'g)kBAS
Ms— ks AT i 2(kam ot)]— | e KTOKAT  SMe— K6 KA o ke )]
4 4 16
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(Ms—K?T'5)k°A%] (Mg—K2T'g)kCA®]
_[f siM4(ka— wt)]—[l—6 sif5(ka— wt)]. (20
From Eg.(180b) one notices that the coefficients, for n - (Mg—KT'5)
even are influenced only by the nonlinear coefficievitsand a|Mg— k2T 5|k2A2 1+k°A Wr—g)+ e
dispersive constantk, having odd indices. Similarly Egs. A,= N T3 »
(189 and (180 show thatX,, for n odd is affected by non- 8 [(Mz—81'2k%)"+9a°T'2k”] (25

linear and dispersive coefficients having even indices.

In acoustics dispersion usually is negligible. THysis
very small. IfT", were identically zero, the exact solution of
Eq. (18) would be

3(Mg— kZFS) N
4(M,—K2T )

[( M 27— 18F2k2)2+ 144a21"§k6]1/2.
(26)

4 272
a|M,— k2T ,|k3A3 ‘l KA
°° As= 24

c ax,
U :n; SnkM, cogn(ka—wt)]. (21)

Let us now assume th&ly is very small, but not zero. In this  \gte that in the nondispersive casehen allT,’s are negli-
case, we introduce a more general series expansion gible) and when onlyM.,, M, andM, are to be taken into
o account, Eq(25) reduces to
U= >, aB, sifn(ka—wt)]+aC, cogn(ka—wt)]

n=1
(22)

as a solution of Eq(18). The coefficientd,, andC,, can be
dependent on the propagation distaa¢ceut we will assume
that their derivatives with respect to distance is negligiblewhich agrees with Eq(4) used to define the nonlinearity

By using this substitution and approximation, we find closedparameter. Under the same conditions the third harmonic

_ a|M4[k?A?

27 8M2 ’ (27)

expressions for the coefficienBs, andC,,: simplifies to
5 —n?(n?—1)al',k*X,
" nA(n2— 1) %87 2%+ 4k?n%(M— 202l ,k2)% _a|My[k°A 29
(239 3 24am,

2nk(M,—2n2I",k?)X,,
n*(n?—1)2a%T 5k + 4k?n%(M,— 2n°T",k?)?’
(23b)

Using these expressions, one can write the amplitydef
the nth harmonic signal:

Ch= which is the limit of Eq.(5) for the third harmonic amplitude
given by Thurston and Shapiro for large values of the fourth

order elastic constar,.

a|X|

= 20—
A“_[n4(n2— 1)2a?T' 5k®+ 4k?n?(M,— 2n°T ,k?) 2] 12" [o K1U (exp. data
(24 : ireRa
= S1-P (exp. data

The amplitudes of the second and third harmonics generated 150|=- Eig %Egggig i i
by propagation of an initially sinusoidal wave over a distance Fe $1-p (model

a in a dispersive nonlinear medium can be evaluated from ,

Eq. (24) by usingn=2 or n=3 as follows: 10l 1

TABLE lIl. Range of amplitude$10 ° m) used in the experiments of Na.

Nonlinearity Parameter

K1-
Frequency unpolarized K1-polarized Sl-unpolarized Sl-polarized
5 MHz 16.1-26.2 18-27.8 15.8-29.4 17.1-28.6 0 r
(21.15 (22.9 (22.6 (22.85 B ‘ ' '
10MHz  13.7-22.6  161-233  142-282  16.6-275 0 10 20 30 40 50
(18.19 (19.7) (21.2 (22.05 Frequency (MHZ)
15 MHz 4.5-11.7 54-11.4 5.1-11.6 6.0-11.2
8.1 (8.9 (8.39 (8.6 FIG. 2. Frequency dependence of the nonlinearity paranter different
30 MHz 1.9-3.0 2.2-34 2.0-4.4 2.1-4.7 PZT samples. Data points represent experimental measurements. The lines
(2.45 2.8 3.2 (3.9 are the theoretical prediction using the perturbation solution of the disper-

sive nonlinear differential equation with parameter values given in Table IV.
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TABLE IV. List of elastic constantgkg/ms) and dispersion constantsg m/€) for K1 andS1 samples.

Sample K, Kj Ky I, I's r,
K 1-unpolarized 14.7810'° —162.0<10Y° 3.015x10'° 2.0x10°2 —2.70x10? ?
K 1-polarized 16.4510'° —193.0x10'° 3.190<10'° 2.0x10°2 —3.60x10? ?
S1-unpolarized 14.9810'° —104.0x10Y 25.830<10%° 2.0x10°8 2.35x107 ?
S1-polarized 16.3910'° —112.0x10%° 74.700<10'° 2.0x10°3 9.50x 107 ?

The higher harmonics can be calculated in an analogousoted thatB remains independent of the input amplitude at
way. The presence of the factak"A" in the leading term of any given frequency. The value Kf, given in Table IV was
the expression for theth harmonic means that the ampli- necessary for the theoretical model to produce third harmon-

tudes of the harmonics decrease rapidlynaacreases. ics as large as actually observed in the experiments. The
definition of 85 [Eq. (10)] instead ofB, [Eq. (7)] guarantees
Il. DISCUSSION that the theoretical value of the new second nonlinearity pa-

rameter is independent of frequencylif is negligible. We
also observe that the magnitudes of the first and this second
Now that we have obtained an analytical solution for thenonlinearity parameter do not change significantly for values
dispersive nonlinear differential equation in terms of nonlin-of K between zero and 1®
ear constantd , and dispersion constanks , we can adjust The parameter sets in Table IV were used to make a
the numbers and find a set of theoretical parameters to mateheoretical calculation of the nonlinearity parameters for all
the experimental observations. The samples under considefeur of the samples in the frequency range between 1 and 40
ation areK1 andS1 samples in both polarized and unpolar- MHz. The results, using interpolation and extrapolation on
ized form. TheK1 samples had 45% PbTiO3 with a grain the initial mean amplitudes, are shown in Fig. 2 as full lines.
size approximately 4um; the S1 samples had 15% PbTiO3 These theoretical curves fit the experimental data points with
with a grain size approximately 2,6m. The velocity, den- amazingly good agreement. It is necessary to allow both
sity and thickness are summarized in Table Il. The experipositive and negative values bf in the model in order to
ments of Na and Breazeale have been performed at four ditnatch the experimental measurements #t and S1
ferent frequencies of an initially sinusoidal ultrasonic wave:samples, respectively. The link to a physical phenomenon to
5, 10, 15, and 30 MHz. For each sample, the range of initiakxplain this behavior is not yet clear.
amplitudes used at these frequencies is listed in Table Ill.  With this model one can calculate all constafi®th
The mean value is written between brackets. We note that theonlinear and dispersiydrom experimental measurements:
applied amplitude diminishes drastically when higher fre-K, from velocity measurementk;; andK , from the first and
quencies are used. Experimental measurements of the secoggtond nonlinearity parametesand 3, at low frequencies;
harmonic signal at the four frequencies used and application, from the velocity dispersior'; from the dispersiortfre-
of Eq. (4) lead to the discrete values of the nonlinearity pa-quency dependeng@f the first nonlinearity parametef;,
rameterg listed in Fig. 2. The nonlinearity parameter shows from the dispersion of the second nonlinearity parameter, etc.
a frequency-dependent behavior. Using the solution derive@ince at present there have been no measurements of the
in the previous paragraphs one can find a set of parametetisird harmonic signal at different frequencies, we have put a
per sample that fit each experimental data point. The valueguestion mark at the position of tHg value.
of these parameters are given in Table IV. For each sample
these nonlinearity coefficientdl,, and dispersion constants
I', are independent of applied frequency and amplitude. Th
nonlinearity parameteB becomes frequency dependent be- Use of perturbation theory always suggests that a num-
cause of a nonzero magnitude Iof. However, it should be ber of terms are neglected and that only an approximate so-

A. Application to PZT ceramic samples

g. Estimation of perturbation theory error

TABLE V. Calculated relative amplitudes of second to seventh harmonics resulting from propagation over 9.03 miilirutigolarized sample. Amplitude
of fundamental at input is given as well as its relative change at the receiver po#itor§;, K,, T',, andT; as in Table IV; we assumiz=10",
Kg,K7,..=1'4 I's,..=0.

Frequency  Amplitude A Mo A A3 As As As Ar
(MHz) (107 m) AT A A A A A A
1.0 22.2000 0.149-13 0.42E-04 0.57%-07 0.79%€-11 0.37%-16 0.70€E-22 0.64E-28
5.0 21.1500 0.192-09 0.98€-03 0.65E-05 0.42%-08 0.96(-13 0.85&-18 0.37%&-23
10.0 18.1500 0.6a6-08 0.32°E-02 0.38%-04 0.43%&-07 0.16&-11 0.25%-16 0.19E-21
15.0 8.1000 0.3(#-08 0.30&-02 0.25%-04 0.19%-07 0.50E-12 0.51E-17 0.25E-22
20.0 6.2167 0.586-08 0.38E&-02 0.36E-04 0.27&-07 0.72E-12 0.73&-17 0.35%-22
25.0 4.3333 0.528-08 0.35&-02 0.34E-04 0.22°E-07 0.50E-12 0.41E-17 0.15%-22
30.0 2.4500 0.164-08 0.23&-02 0.18&-04 0.82°E-08 0.11€&-12 0.57£-18 0.12%-23
35.0 1.9750 0.172-08 0.18&-02 0.19E-04 0.75€-08 0.89E-13 0.36E-18 0.71%-24
40.0 1.5000 0.12¢#-08 0.10£-02 0.16E-04 0.51€-08 0.45%-13 0.15€E-18 0.24E-24
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TABLE VI. Same as Table VI, for a propagation distance of 8.82 mm inShepolarized sample.

Frequency Amplitude A 'ﬁl,l 0 'Aj E ﬁ E % ﬁ

(MHz) (1071°m) AT A A A A A A
1.0 23.4000 0.670-11 0.19E-04 0.12F-05 0.11E-10 0.39€-16 0.664£-22 0.584£-28
5.0 22.8500 0.965-07 0.50E-03 0.14&-03 0.68(E-08 0.11E-12 0.92E-18 0.39€&-23
10.0 22.0500 0.536-05 0.23E-02 0.10€-02 0.97E-07 0.31£-11 0.49E-16 0.40€-21
15.0 8.6000 0.148-05 0.26E-02 0.56E-03 0.29%-07 0.55E-12 0.50%&-17 0.24%-22
20.0 6.8667 0.322-05 0.48%-02 0.846&-03 0.47E-07 0.93&-12 0.89F-17 0.446&-22
25.0 5.1333 0.388-05 0.73€-02 0.92F-03 0.47E-07 0.87E-12 0.74%-17 0.31E-22
30.0 3.4000 0.2H-05 0.90%-02 0.69%-03 0.28E-07 0.39E-12 0.24F-17 0.73E-23
35.0 2.8500 0.275-05 0.13E-01 0.77E-03 0.29E-07 0.37E-12 0.20E-17 0.53E-23
40.0 2.3000 0.280-05 0.17€E-01 0.74E-03 0.24€-07 0.25&-12 0.11£-17 0.26%-23

lution is found for the general problem. Therefore it is nec-  The use of symbolic software enables us to estimate this
essary to check whether the solution is being used within thdifference. Table VII gives the percentage of relative error
range of applicability of the perturbation theory, and theintroduced by the truncation. We defined
magnitude of the approximation involved. Max

First, we can check the magnitude of the calculated am-  Estimated erron%)=2100- 1,
plitudes compared with the initial amplitude of the pure sinu- 2
soidal wave at input. Tables V and VI, calculated with the setyhere
of parameters listed in Table IV, and wil equal to 168,

(31)

shows that the fundamental amplitude does not change MaXFMaXperioﬂg ﬂ —M, (QZ_LZJ

significantly from the applied input amplitudeat any given Ja da

frequency. The generated amplitudes of the second and third 4 w

harmonic signals appear to be measurable, and they are in- 4| e J L:_ > X, sifn(ka—wt)]
deed considerably smaller than the fundamental amplitude, Ja at ="

e.g., of the order of 102 for K1-unpolarized samples and with
10‘2 for Sl-polarized samples at 30 MHz for the second
harmonic. The higher orders have amplitudes which diminish ~ U=U%+U°
uniformly for all frequencies. and

A second check consists of investigating the error in-
volved when we took into account only the zero approxima- .
tion of the small factors containing®, JU% da, 9°U°/9a?, Max2=Maxpe,io4 ,; Xy sinfn(ka=wt)]|.
etc. as contributions to the right side of E@3) after substi-
tution of Eq. (14); i.e., instead of taking into account the
complete right side

o0

We note that the error never exceeds 5%, excepsiopo-
larized samples at 30 MHz. Looking again at Table VI, we
observe that the second and third harmonic amplitudes for

4y U 4y J*U the S1-polarized samples are indeed substantial and that it
gl —|—My| —+|h| —=|-T3| —= (29 ) : )
da da da Jda might be inaccurate to apply the perturbation theory for
we considered onlv the first terms: higher frequencies. For the other samples we may conclude
y ' that the use of the perturbation theory is justified.
- aUO I g2u0 &UO a*u°
Z M. —t ,
= o0a ga| oga” Ill. CONCLUSION

We propose a theoretical model which combines higher-

( = X, sinn(ka- wt)]) (300 order nonlinearity and generalized dispersion effects to inter-
n=1 pret the results of experiments on PZT ceramics reported by

and assumed that the difference between the two is neglNa and Breazeale. The new dispersive nonlinear differential
gible. equation has been solved by perturbation theory. It provides

TABLE VII. Estimated difference€%) between right-hand side of the complete dispersive nonlinear differential equation and the part considered using the
perturbation method.

K1- S1-
Frequency Amplitude unpolarized K1-polarized unpolarized S1-polarized
5 MHz 25x10° 1 m 0.96524 0.94616 0.72935 0.98461
10 MHz 20x10° 1% m 3.03273 2.96520 2.90238 4.48704
15 MHz 10107 m 3.16582 3.10470 3.08937 4.79720
30 MHz 3x107¥0 m 2.40786 2.39183 4.35913 8.08418
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